STUDY OF ⁷He USING THE d(⁶He,p)⁷He REACTION

A. H. Wuosmaa^{a)}, K. E. Rehm,^{b)}, J. P. Greene^{b)}, D. J. Henderson^{b)}, R. V. F. Janssens^{b)}, C. L. Jiang^{b)}, L. Jisonna^{c)}, E. F. Moore^{b)}, R. C. Pardo^{b)}, M. Paul^{d)}, D. Peterson^{b)}, S. C. Pieper^{b)}, G. Savard^{b)}, J. P. Schiffer^{b)}, R. E. Segel^{c)}, S. Sinha^{b)}, X. Tang^{b)}, and R. B. Wiringa^{b)}

a)*Western Michigan University, Kalamazoo, MI 49008-5252, USA

b)*Argonne National Laboratory, Argonne, IL 60439, USA

c)*Northwestern University, Evanston, IL 60208, USA

d)*Hebrew University, Jerusalem, Israel 91904

We have studied the $d(^6\text{He,}p)^7\text{He}$ reaction using a ^6He beam to study the properties of the exotic, neutron-rich nucleus ^7He . The nucleus ^7He , which possesses no particle-bound states, is one of the simplest nuclei for which there remains considerable debate about its structure. The structure of ^7He is particularly interesting in light of the current interest in systems containing many loosely bound neutrons. In addition to the well established ground state [1], several experimental efforts have been made to understand the properties of possible excited states of this system [2-4]. In one of these [4] it has been suggested that there may exist a low-lying level that possesses significant overlap with $^6\text{He}_{g.s.}$ +n, and should thus be populated strongly in the $d(^6\text{He},p)^7\text{He}$ reaction.

To examine the properties of possible low-lying excited states in this nucleus, we have

To examine the properties of possible low-lying excited states in this nucleus, we have studied the inverse-kinematic reaction $d(^6\text{He},p)^7\text{He}$ using a radioactive ^6He beam produced at the in-flight facility at the ATLAS accelerator at Argonne National Laboratory. Backward emitted protons were detected using an array of segmented annular silicon detectors, and coincident $^{4,6}\text{He}$ ions were detected and identified using an array of silicon E Δ E telescopes at very forward angles. Figure 1 shows a representative Q-value spectrum. The experimental results will be compared with theoretical predictions and other data for excited states in ^7He .

Work supported by *The Faculty Research and Creative Activities Fund, Western Michigan University, and The U. S. Department of Energy, Nuclear Physics Division under Contract numbers *DE-FG02-04ER41320, †W-31-109-ENG38 and †DE-FG02-98ER4106.

- [1] R. H. Stokes and P.G. Young, Phys. Rev. **178**, 2024 (1969).
- [2] A. A. Kosheninnikov et al., Phys. Rev. Lett. 82, 3581 (1999).
- [3] H. G. Bohlen *et al.*, Phys. Rev. C **64**, 024312 (2001).
- [4] M. Meister et al., Phys. Rev. Lett. 88, 102501 (2002).

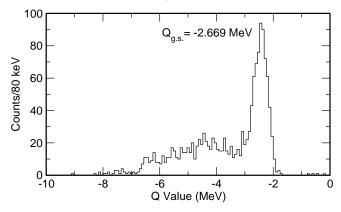


Figure 1. Proton Q-Value spectrum from the $d(^6\text{He},p)^7\text{He}$ reaction for $110^\circ \le \theta_p \le 160^\circ$.